Effects of bacterial host and dichloromethane dehalogenase on the competitiveness of methylotrophic bacteria growing with dichloromethane.
نویسندگان
چکیده
Methylobacterium sp. strain DM4 and Methylophilus sp. strain DM11 can grow with dichloromethane (DCM) as the sole source of carbon and energy by virtue of homologous glutathione-dependent DCM dehalogenases with markedly different kinetic properties (the kcat values of the enzymes of these strains are 0.6 and 3.3 S-1, respectively, and the Km values are 9 and 59 microM, respectively). These strains, as well as transconjugant bacteria expressing the DCM dehalogenase gene (dcmA) from DM11 or DM4 on a broad-host-range plasmid in the background of dcmA mutant DM4-2cr, were investigated by growing them under growth-limiting conditions and in the presence of an excess of DCM. The maximal growth rates and maximal levels of dehalogenase for chemostat-adapted bacteria were higher than the maximal growth rates and maximal levels of dehalogenase for batch-grown bacteria. The substrate saturation constant of strain DM4 was much lower than the Km of its associated dehalogenase, suggesting that this strain is adapted to scavenge low concentrations of DCM. Strains and transconjugants expressing the DCM dehalogenase from strain DM11, on the other hand, had higher growth rates than bacteria expressing the homologous dehalogenase from strain DM4. Competition experiments performed with pairs of DCM-degrading strains revealed that a strain expressing the dehalogenase from DM4 had a selective advantage in continuous culture under substrate-limiting conditions, while strains expressing the DM11 dehalogenase were superior in batch culture when there was an excess of substrate. Only DCM-degrading bacteria with a dcmA gene similar to that from strain DM4, however, were obtained in batch enrichment cultures prepared with activated sludge from sewage treatment plants.
منابع مشابه
Bacterial growth with chlorinated methanes.
Chlorinated methanes are important industrial chemicals and significant environmental pollutants. While the highly chlorinated methanes, trichloromethane and tetrachloromethane, are not productively metabolized by bacteria, chloromethane and dichloromethane are used by both aerobic and anaerobic methylotrophic bacteria as carbon and energy sources. Some of the dehalogenation reactions involved ...
متن کاملDichloromethane dehalogenase with improved catalytic activity isolated from a fast-growing dichloromethane-utilizing bacterium.
A methylotrophic bacterium, denoted strain DM11, was isolated from groundwater and shown to utilize dichloromethane or dibromomethane as the sole carbon and energy source. The new isolate grew at the high rate of 0.22 h-1 compared with 11 previously characterized dichloromethane-utilizing bacteria (micromax, 0.08 h-1). The dichloromethane dehalogenase from strain DM11 (group B enzyme) was purif...
متن کاملDNA polymerase I is essential for growth of Methylobacterium dichloromethanicum DM4 with dichloromethane.
Methylobacterium dichloromethanicum DM4 grows with dichloromethane as the unique carbon and energy source by virtue of a single enzyme, dichloromethane dehalogenase-glutathione S-transferase. A mutant of the dichloromethane-degrading strain M. dichloromethanicum DM4, strain DM4-1445, was obtained by mini-Tn5 transposon mutagenesis that was no longer able to grow with dichloromethane. Dichlorome...
متن کاملGrowth inhibition of Escherichia coli by dichloromethane in cells expressing dichloromethane dehalogenase/glutathione S-transferase.
Dichloromethane (DCM) dehalogenase converts DCM to formaldehyde via the formation of glutathione metabolites and generates 2 mol HCl per mol DCM metabolized. Growth of Escherichia coli expressing DCM dehalogenase was immediately and severely inhibited during conversion of 0.3 mM DCM. Intracellular pH (pH(i)) rapidly decreased and chloride ions were steadily released into the medium. Bacterial g...
متن کاملAntimicrobial Effects of Some Persian Gulf Marine Sponges
Background: We investigated in vitro antimicrobial activity of five marine sponge species collected from Kish Island in the Persian Gulf: Fascaplysinopsis reticulata, Callyspongia clavatus, Callyspongia siphonella, Niphates furcata, and Pseudosuberites clavatus against gram positive bacteria, gram negative bacteria, fungi and yeasts. Materials and Methods: Sponage extracts were prepared by two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 64 4 شماره
صفحات -
تاریخ انتشار 1998